

Research Article

Comparative oral and dermal bio accessibility study of Ayurvedic Antidote (*Manjishtadi Agada*) by Franz Diffusion method

Siddhesh Chirde¹, Nilima Narayanrao Wadnerwar^{2*}

1. Student, Department of Agadtantra, Mahatma Gandhi Ayurved College, Hospital and Research Centre, Salod (H), Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha-442001, Maharashtra, India.
2. Professor, Department of Agadtantra, Mahatma Gandhi Ayurved College, Hospital and Research Centre, Salod (H), Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha-442001, Maharashtra, India.

Received: 28-03-2025

Accepted: 04-09-2025

Published: 31-12-2025

Abstract

Background & objectives: *Manjishtadi Agada* described in Bharat Bhaishajya Ratnakar is indicated in all type of poisoning however the route of administration is not specified. *Agada* formulations are generally administered through various routes both internal (excluding parenteral routes) and external in cases of poisoning. In emergency condition like poisoning or snake bite, rapid absorption of the drug is essential to achieve peak level and therapeutic effect. The present study was conducted to compare the absorption of *Manjishtadi Agada* through oral and dermal route. **Methods:** In this study, *Manjishtadi Agada* was prepared and subjected to physicochemical analysis followed by dermal and oral bio accessibility studies using Franz cell diffusion apparatus. Absorbance and corresponding time were recorded and the graphs were plotted for dermal and oral bio accessibility of *Manjishtadi Agada*. Assessment was performed using calibration curve to estimate the absorption of the drugs with different time interval and dilutions. Pearson's Correlation coefficient was calculated to determine the relationship between rate and time of absorption of both the routes. **Results:** A statistically significant difference was observed in the absorbance of *Manjishtadi Agada* between dermal and oral route. **Interpretation and Conclusions:** Bio accessibility of *Manjishtadi Agada* was found to be higher through the oral route compared to the dermal route. The formulation may be absorbed more rapidly when administered orally, particularly at higher concentrations. Therefore, in both acute and chronic poisoning conditions, oral administration of *Manjishtadi Agada* is preferable.

Access this article
online

Website:
<https://ijam.co.in>

DOI: <https://doi.org/10.47552/ijam.v16i4.5991>

Keywords: Bioaccessibility, Diffusion study, Franz cell diffusion, *Manjishtadi Agada*, Poisoning.

Introduction

Poisoning is a serious public health hazard in the country and it is one of the leading causes of emergency hospitalization. More than 50,000 people die every year due to suicidal and accidental poisoning in India. (1) In rural India, poisoning is the fourth most common cause of mortality. The rate varies from 15-30%. (2,3) Age group 19-40 years has the highest prevalence of poisoning. The overall sex ratio was 1.7, and the male to female ratio was highest in the northern region and lowest in the eastern region. (4) In rural area, people die due to delayed reporting of cases in higher centers. Hence it is necessary to increase the survival period so that the precious time of the patient can be saved.

The Ayurvedic formulations mentioned as *Agada* (Ayurvedic Antidotes) for the treatment of poisoning have not been

scientifically studied in detail. Even in the references of most of the *Agada*, dose and duration of administration is not specified. However, the research studies are conducted on some individual drugs included in these *Agada*. Hence, to incorporate *Agada* effectively in the clinical practice, scientific research is necessary to establish standard parameters and to validate their safety and efficacy.

Manjishtadi Agada described in Bharat Bhaishajya Ratnakara is a polyherbal Ayurvedic antidote indicated for use in all types of poisoning. (5) However, its route of administration is not mentioned. *Agada* are generally administered through various routes, both internal (excluding parenteral) and external, in cases of poisoning. In emergency conditions such as poisoning or snake bite, rapid absorption of the drug is required to achieve peak levels and therapeutic effect. Therefore, the present study was undertaken to determine the route through which *Manjishtadi Agada* is absorbed more rapidly and demonstrates better efficacy. This objective was addressed through an in vitro study comparing oral and trans-dermal diffusion method.

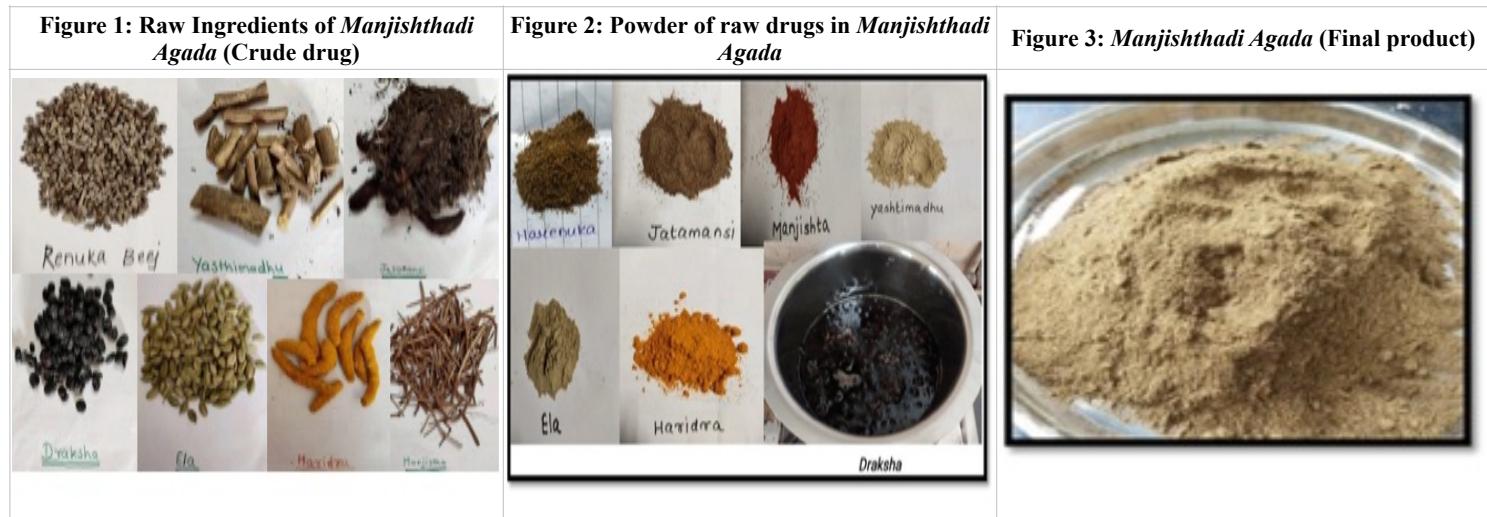
Material and methods

For this study, approval was obtained from the Institutional Ethics Committee (IEC) in a meeting held on 23/05/2022 with Ref. No. MGACHRC/IEC/May-2022/467. The study commenced after

* Corresponding Author:

Nilima Wadnerwar

Professor, Department of Agadtantra, Mahatma Gandhi Ayurved College, Hospital and Research Centre, Salod (H), Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha-442001, Maharashtra, India.
Email Id: dr.nilima_wadnerwar@rediffmail.com


acceptance from the SPARK team, CCRAS, New Delhi. All experiments were conducted in compliance with Good Laboratory Practices. The study was carried out from January 2023 to March 2023.

Materials

Table 1: Ingredients of Manjishtadi Agada

SN	Drug Name	Latin Name	Part used	Quantity
1	Manjishta	<i>Rubia cardifolia</i> Linn	Roots	50gm
2	Ela	<i>Elletoria cardamomum</i> Maton	Seeds	50gm
3	Draksha	<i>Vitis venifera</i> Linn	Fruit	50gm
4	Nisha (Haridra)	<i>Curcuma longa</i> Linn	Rhizome	50gm
5	Jatamansi	<i>Nardostachys jatamansi</i> DC	Rhizome	50gm
6	Yashtimadhu	<i>Glycrrhiza glabra</i> Linn	Roots	50gm
7	Harenuka (Renuka)	<i>Vitex agnus-castus</i> Linn	Seeds	50gm

All the seven drugs were procured from the Manakarnika Ayurvedic Aushadhalaya, Pune and were identified and authenticated from the department of Dravyaguna.

Physicochemical Analysis

Loss on drying, Total Ash value, Acid insoluble ash value, Alcohol extractive value, Water extractive value, pH and Microbial load were conducted as per the methods described in Ayurvedic Pharmacopoeia of India (API).

Dermal bio accessibility study

Franz cells diffusion study was used for in vitro experiment. Franz cell diffusion apparatus is made up of two small glass chambers. The upper one is donor chamber and the lower one is recipient chamber.

Diffusion study: (6, 7, 8)

Requirements: 5cm goat intestine, Franz cell, rubber, drug, beaker, Magnetic Stirrer, blade.

Procedure:

The fresh gut of goat was collected. The 5cm goat gut was taken and it was cut open with blade. Fat layer was separated by blade so as to observe the thin skin layer which is to be placed on lower

Pharmaceutical study

Preparation of Manjishtadi Agada:(5)

Manjishtadi Agada was prepared in Dattatraya Rasashala, M.G.A.C. H. & R.C. Salod (Hirapur), Wardha. Fine powders of each ingredient (*Manjishta*, *Yashtimadhu*, *Ela*, *Harenuka*, *Jatamansi*, *Haridra*) were prepared separately (Fig. 2). Since *Draksha* has a higher moisture content, it was soaked overnight in water, seeds were removed and pulp was obtained. The pulp was ground into a smooth paste and thoroughly mixed with equal quantities of the powders of the six drugs using a mixer. The mixture was dried in shade. As the *Draksha* has higher moisture content the process of grinding and sieving it with cotton cloth was repeated several times simultaneously until the moisture content was reduced. Using thin cotton cloth, the final mixture was evenly sieved and dried in shade. The powder was filtered through sieve of desired size to get homogenous mixture. (Fig.3) The prepared *Agada* was subjected to physicochemical analysis and diffusion study at Analytical Laboratory, M.G.A.C. H. & R.C. Salod (Hirapur), Wardha.

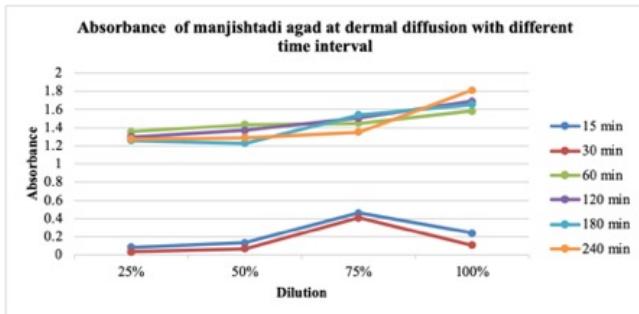
flat flange joint. A buffer solution was prepared in a beaker by adding one buffer tablet of 500mg in water of 100ml and stirred. Solution was poured in Receptor chamber. The donor chamber was placed at top and tied with the rubber to avoid the movement. The drug was loaded in donor chamber. The beaker filled with water was placed on the Magnet stirrer and 37° C temperatures was set on the stirrer as that of body temperature. The stirrer was started. The drug in donor chamber was allowed to diffuse from the goat intestinal membrane in the recipient chamber. Sample was collected at 15 min, 30 min, 60 min, 120 min, 180 min and 240 min maintaining pH of 7.0. Each sample collected at different time interval was subjected to dilution. For dilution, a buffer solution was prepared in a beaker by adding one buffer tablet of 500mg in water of 100ml. 2.5ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 25% dilution. 5ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 50% dilution. 7.5ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 75% dilution. 10ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 100% dilution. Total 24 samples were prepared for dermal Trans-diffusion study. All the samples were run under SL244

Double Beam UV-VIS Spectrophotometer of ELICON® on 254nm Wavelength. The reading were taken and was plotted against time and absorbance on x and y axis.

Fig.4 Franz Cell diffusion apparatus

Oral bio accessibility study

The same method was used for oral bio accessibility.

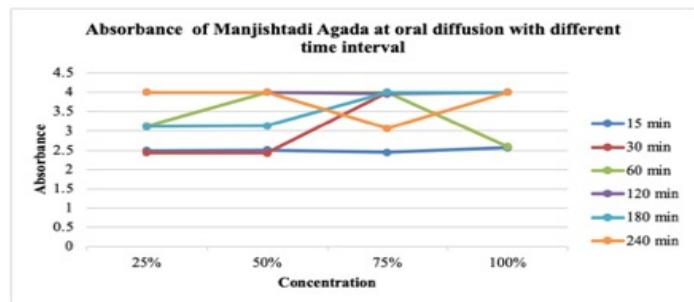

Diffusion study: (6, 7, 8)

Requirements: 5cm goat intestine, Franz cell, rubber, drug, beaker, Magnetic Stirrer, blade.

Procedure: The fresh gut of goat was collected. The 5cm goat gut was taken and it was cut open with blade. Fat layer was separated by blade so as to observe the thin skin layer which is to be placed on lower flat flange joint. A buffer solution was prepared in a beaker by adding one buffer tablet of 500mg in water of 100ml and stirred. Solution was poured in receptor chamber. The donor chamber was placed at top and tied with the rubber to avoid the movement. The drug was loaded in donor chamber. The beaker filled with water was placed on the Magnet stirrer and 37°C temperatures was set on the stirrer as that of body temperature. The stirrer was started. The drug in donor chamber was allowed to diffuse from the goat intestinal membrane in the recipient chamber. Sample was collected at 15 and 30 min by maintaining pH of 4.0, at 60 and 120 min by maintaining pH of 7.0, at 180 min and at 240 min by maintaining pH of 9.2. Each sample collected at different time interval was subjected to dilution. For dilution, a buffer solution was prepared in a beaker by adding one buffer tablet of 500mg in water of 100ml. 2.5ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 25% dilution. 5ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 50% dilution. 7.5ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 75% dilution. 10ml of buffer solution was added in 2ml sample of *Manjishtadi Agada* to make 100% dilution. Total 24 samples were prepared for oral Trans -diffusion study. All the samples were run under SL244 Double Beam UV-VIS Spectrophotometer (ELICON®) on 240nm Wavelength. The reading were taken and was plotted against time and absorbance on x and y axis.

Results

Figure 5: Absorbance of *Manjishtadi Agada* at dermal diffusion with different time interval


Table 2: Observations of Physicochemical analysis and microbial load

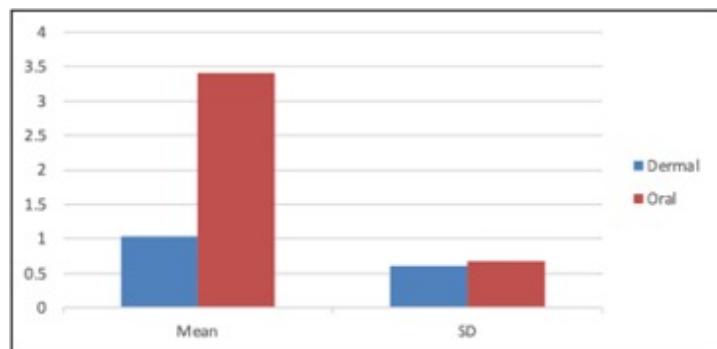
SN.	Analytical Parameter	Observations
1	Loss on drying at 105°C	0.81%
2	Total Ash Value	1.73%
3	Acid Insoluble Ash	0.31%
4	Water soluble Extractive	2.62%
5	Alcohol soluble extractive	37.15%
6	pH	6.1
	Microbiological load	Observations
7	Total Viable Count	Absent
8	Enterobacteriaceae	Absent
9	Total fungus count	Absent
10	E-coli	Absent
11	Salmonella	Absent
12	Staphylococcus aureus	Absent
13	Pseudomonas aeruginosa	Absent

Table 3: Absorbance of *Manjishtadi Agada* at different time interval and different concentration

Time intervals in minutes	Sample concentration	Absorbance	
		During dermal trans -diffusion study	During Oral diffusion study
15	25%	0.0826	2.4879
	50%	0.1330	2.5074
	75%	0.4601	2.4426
	100%	0.2411	2.5657
	25%	0.0344	2.4358
	50%	0.0671	2.4254
30	75%	0.4071	4.0000
	100%	0.1065	4.0000
	25%	1.3550	3.1220
	50%	1.4331	4.0000
	75%	1.4505	4.0000
	100%	1.5828	2.5871
60	25%	1.2964	4.0000
	50%	1.3708	4.0000
	75%	1.5063	3.9527
	100%	1.6878	4.0000
	25%	1.2573	3.1139
	50%	1.2294	3.1359
120	75%	1.5413	4.0000
	100%	1.6536	4.0000
	25%	1.2736	4.0000
	50%	1.2901	4.0000
	75%	1.3500	3.0608
	100%	1.8111	4.0000

Figure 6: Absorbance of *Manjishtadi Agada* at oral diffusion with different time interval

Table 4: Statistical analysis of absorbance with Pearson's correlation


Groups	Count (N)	Sum	Mean	Variance	SD	r	p
Dermal	24	24.621	1.025875	0.390722	0.6119	0.6148	0.0014
Oral	24	81.8372	3.409883	0.467337	0.6692		

There was a significant relation ($\alpha = 0.05$).

Table 5: Statistical analysis of absorbance in dermal and oral diffusion study of *Manjishtadi Agada*

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	68.20195	1	68.20195			
Within Groups	19.73535	46	0.429029	158.968	<0.025	4.051749
Total	87.9373	47				

There was a significant difference found ($\alpha = 0.05$).

Figure 7: Mean and SD for both the group of dermal and oral diffusion study of *Manjishtadi Agada*

Discussion

In the present study, *Manjishtadi Agada* was prepared using seven ingredients in equal proportion. The finished product obtained was yellowish brown in colour with characteristic smell of *Ela*, *Draksha* and *Manjishta*. Since *Draksha* contains more moisture, a little modification was conducted which is a routine practice where *Draksha* is an ingredient. This modification was done to mix *Draksha* homogeneously with other ingredients. In physicochemical analysis, it was observed that the moisture content was relatively high, possibly due to sticky and water retaining nature of *Draksha*. Hence, it is recommended to prepare tablets of *Manjishtadi Agada* and compare the shelf life of powder and tablet form for use in human beings.

The ash value was found to be 1.73, which may be attributed to the inorganic content of the herbal drugs. The formulation was soluble in both water and alcohol and exhibited a weakly acidic nature with a pH of 6.1. No bacterial contamination was detected in the prepared Agada. The physicochemical parameters established in this study may serve as reference standards for further research. Following physicochemical analysis, bio accessibility study by diffusion method. Bio accessibility is essential for bioavailability as the bioactive compounds must be released from food matrix and modified in the GI tract before they are bio available.

Franz diffusion method is a gold standard technique to study the penetration of the drug in to the skin and GIT. (8) Franz diffusion test is proposed to analyse the drug diffused from skin membrane by using Franz diffusion cell apparatus. Dermal diffusion study indicates that the absorption of *Manjishtadi Agada* starts after 15 minutes and attains maximum absorption at 240 minutes. The absorbance of *Manjishtadi Agada* is maximum with 75% dilution at 15 and 30 minutes interval. The absorbance of *Manjishtadi Agada* is maximum with 100% dilution at 60, 120, 180 and 240 minutes interval. At 25%, 50% and 75% dilution, absorbance is maximum at 60 minutes. At 100% dilution, absorbance is maximum at 240 minutes. It indicates that the formulation requires 60 minutes to 240 minutes to attain its peak absorption at different dilutions (table 3). Hence this *Agada* should be applied in the form of *lepa* or ointment so that it can be retained up to 4 hours. The pH of all the samples were maintained at 7.0 as that the pH of the skin.

In oral bio accessibility study, it is observed that the absorption of *Manjishtadi Agada* starts after 15 minutes and attains maximum absorption at 240 minutes. The absorbance of *Manjishtadi Agada* is maximum with 100% dilution at all time intervals. At 25 % dilution, *Manjishtadi Agada* is absorbed maximum at 120 minutes. At 50 % dilution, *Manjishtadi Agada* is absorbed maximum at 60 minutes and retains up to 240 minutes. At 75 % and 100% dilution, *Manjishtadi Agada* is absorbed maximum at 30 minutes and retains up to 240 minutes. The absorbance is faster with 75% and 100% dilution. Hence, this concentration may be considered for acute conditions.

The samples were collected at different intervals maintaining the pH present in stomach, duodenum, small and large intestine. It is observed that the absorbance is more at 60 min interval at 50% and 75% dilution. At 120 min and 240 min interval, the absorbance is more at all dilutions (table 3). It indicates that *Manjishtadi Agada* is absorbed more from duodenum, small and large intestines. When both the routes are compared, it is observed that the absorbance of *Manjishtadi Agada* is more with oral administration than the dermal route. The same is verified statistically.

As the data is quantitative in nature, ANOVA test was applied. As the p value is less than 0.025, a significant difference was found in both groups. So it can be said that there is significant difference in absorbance of *Manjishtadi Agada* with oral and dermal through routes of administration. *Manjishtadi Agada* is absorbed more through oral route than the dermal route. For external use, *Manjishtadi Agada* should be applied in the form of *lepa* or ointment to ensure its retention up to 4 hours.

Conclusion

The bioaccessibility of *Manjishtadi Agada* was found to be greater through the oral route compared to the dermal route. This indicates that the formulation may be absorbed earlier when administered orally, particularly at higher concentrations. Therefore, in both acute and chronic poisoning conditions, oral administration of *Manjishtadi Agada* is preferable. In the future, its safety and efficacy in increasing survival time can be evaluated first in animal models and subsequently in human beings. Dose-escalation studies followed by randomized controlled trials may further establish *Manjishtadi Agada* as a primary or adjuvant therapy in the management of various types of poisoning.

Acknowledgement

This project was selected and approved under CCRAS SPARK program 2022. I acknowledge CCRAS for providing scholarship and opportunity to the students to develop their ideas.

I acknowledge the faculties of department of Dravyaguna and Rasashastra, staff of Dattatraya Rasashala and Analytical laboratory, Mahatma Gandhi Ayurved College, Hospital and Research Centre, Salod as well as Central Research Laboratory, DMIHER, Wardha for their expert and technical assistance.

Funding: CCRAS, New Delhi and Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, Maharashtra

Conflict of Interest: There is no conflict of interest.

References

1. All India Institute of Medical Sciences, New Delhi. National Poisons Information Centre. <http://www.aiims.edu/en/departments-and-centers/central-facilities> dated 29-04-2022.
2. Taruni N.G, Bijoy T.H, Momonchand A, A profile of poisoning cases admitted in RIMS Hospital, Imphal. *Journal of Forensic Medicine and Toxicology*. 2001;18(1):31-33.
3. Buran T, Sanem Gökçe Merve Kılıç, Elmas Kasap. Prevalence of Extraintestinal Manifestations of Ulcerative Colitis Patients in Turkey: Community-Based Monocentric Observational Study. *Clinical Medicine and Medical Research*. 2020;1(2):39-46.
4. Mittal C, Singh S, Kumar M. P, Varthya S. B, Toxiccoepidemiology of poisoning exhibited in Indian population from 2010 to 2020-A systematic review and meta-analysis. *BMJ open*. 2021;11(5):1-9.
5. Shah N.G. Bharat Bhaishjya Ratnakar. New Delhi; B.Jain Publishers; 2005. 269p.
6. Clowes H.M, Scott R.C, Heylings J.R, Skin absorption: Flow-through or static diffusion cells. *Toxicol in Vitro*. 1994;8(4):827-830.
7. Shimizu H. Shimizu's dermatology. 2nd edition. Chichester, West Sussex; Hoboken, NJ; John Wiley and Sons, Inc; 2016.
8. Johanna Mattiasson. Method development of an in vitro vertical Franz diffusion cell system to assess permeation of cosmetic active ingredients. [Dissertation]. 2020. (UPTEC K). <http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414205>.
