

## Research Article

## In-vitro and randomised pilot clinical study to analyse the impact of *Vijayasar* (*Pterocarpus Marsupium Roxb.*) and *Vrikshamla* (*Garcinia Indica Choisy.*) in *Sthoulya* (Obesity)

Aishwarya Gargote<sup>1</sup>, Varghese Jibi<sup>2\*</sup>, Sanjay Babar<sup>3</sup>, Mrudula J<sup>4</sup>, Nisha MS<sup>5</sup>, Manna Mathew<sup>6</sup>

- Post Graduate Scholar, Department of Kayachikitsa, Dr. D. Y. Patil College of Ayurveda and Research centre. Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune-18, Maharashtra, India.
- Associate Professor, Dept of Kayachikitsa, Vaidyaratnam Ayurveda College, Ollur, Thrissur, India.
- Professor & Hod, Department of Shalyatantra, Dr D.Y.Patil College of Ayurveda and Research centre. Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pimpri, Pune-18, Maharashtra, India.
- Associate Professor, Santhigiri Ayurveda Medical College, Olassery, Palakkad, Kerala, India.
- Assistant Professor, Santhigiri Ayurveda Medical College, Olassery, Palakkad, Kerala, India.
- Ayurveda Practitioner, Kerala, India.

Received: 01-07-2025

Accepted: 28-12-2025

Published: 31-12-2025

### Abstract

Access this article  
online

Obesity, a major global health issue, is marked by abnormal fat accumulation and linked to conditions like type 2 diabetes, cardiovascular diseases, and metabolic syndrome. It results from a chronic imbalance between calorie intake and expenditure, commonly caused by sedentary lifestyles, high-fat diets, and stress. In *Ayurveda*, obesity—known as *Sthoulya*—is considered a disorder stemming from an imbalance of *Medo Dhatus*, often associated with aggravated *Kapha* and *Vata doshas*. Factors such as improper diet (*Ahara*), lack of physical activity (*Avyayama*), and impaired digestive fire (*Agnimandya*) contribute to its development. The growing prevalence of obesity correlates strongly with increased risks of lifestyle-related diseases like hypertension, diabetes, cardiovascular disease, and certain cancers. According to NFHS-5 (2019–21), overweight or obesity ( $BMI \geq 25 \text{ kg/m}^2$ ) increased among Indian adults: men from 18.9% to 22.9% and women from 20.6% to 24.0%. (1) A 2021 Indian study showed an overall obesity prevalence of 40.3%, higher in urban populations (about 44%), and more common in women (41.9%) than men (38.7%). (2) This preliminary in-vitro and clinical pilot study explores the potential of *Vijayasar* (*Pterocarpus Marsupium*) and *Vrikshamla* (*Garcinia Indica*) in managing obesity. MTT assay results demonstrated that both extracts effectively reduced adipocyte activity without cellular toxicity. Twenty-four patients with *Sthoulya* were randomized into two groups: Group A received *Vijayasar*, and Group B received *Vrikshamla* for six weeks. Both groups showed improvements in body weight, BMI, and waist circumference, with *Vrikshamla* showing more pronounced benefits. The study suggests that *Vrikshamla* has stronger anti-lipogenic effects, indicating greater potential in obesity management.

**Keywords:** *Vrikshamla*, *Vijayasar*, Gene Expression, 3T3-11 cell line, MTT assay, Lipid profile.

Website:  
<https://ijam.co.in>



DOI: <https://doi.org/10.47552/ijam.v16i4.6304>

### Introduction

In *Ayurveda*, obesity is referred as *Sthoulya*, a condition caused by vitiation of *Kapha* and *Medo Dhatus*, and classified as a *Santarpanotta Vyadhi* (disease of over-nutrition). *Acharya Charaka* includes *Sthoulya* among the *Ashtau Nindita Purusha*, indicating its pathological nature. Contributing factors include excessive intake of heavy, sweet, and oily foods, lack of physical activity and day sleeping, leading to *Agni Mandya* (digestive

weakness), *Ama accumulation*, and *Medo Dhatus vriddhi* (excess fat tissue). This obstructs the *Medovaha Srotas*, impairs metabolism and promotes fat deposition.

Obesity is a chronic health disorder characterized by an excessive accumulation of body fat that impairs overall well-being. It is typically identified through Body Mass Index (BMI), with a value of  $30 \text{ kg/m}^2$  or higher classified as obese. However, obesity is not just about weight—it is a complex condition involving metabolic, hormonal, and inflammatory changes that affect nearly every system of the body. Modern research recognizes that obesity results from an imbalance between calorie intake and energy expenditure, but this imbalance is influenced by numerous factors including genetics, diet quality, physical inactivity, emotional stress, sleep disturbances and socio-economic conditions. Addressing obesity at both individual and public health levels is essential in reducing its impact on health systems and improving quality of life.

### \* Corresponding Author:

**Jibi Varghese**

Associate Professor, Department of Kayachikitsa,  
Vaidyaratnam Ayurveda College,  
Ollur, Thrissur, Kerala, India.  
Email Id: [vjayu82@gmail.com](mailto:vjayu82@gmail.com)

At the molecular level, obesity involves enhanced lipogenesis, where excess carbohydrates are converted to fatty acids. Key enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) are activated by insulin, promoting triglyceride synthesis. Transcription factors like SREBP-1c and PPAR- $\gamma$  regulate adipocyte differentiation and fat storage, contributing to increased adiposity. In-vitro study gives an analytical tone to this mechanism through MTT assay, differentiation and gene expression.

*Ayurveda* advocates a comprehensive approach involving *Shodhana* (detoxification), *Shamana* (herbal therapy), *Pathya-Apathya* (dietary regulation), and *Vyayama* (exercise). Herbs like *Vijayasar* and *Vrikshamla* are known for their *Medohara* (fat reducing) properties. (3,4)

### Objectives

- To analyse the effect of *Vijayasar* and *Vrikshamla* in *Sthoulya* with in-vitro and pilot clinical trial.
- To study the effect of *Vijayasar* and *Vrikshamla* on lipid profile.

### Materials and methods

**Research design:** An in-vitro study and Randomised pilot clinical study.

**Ethical aspect:** Ethical approval for the study was obtained (DYPARC/IEC/809/2023) from the Institutional Ethical

Committee of Dr. D. Y. Patil College of Ayurveda and Research Centre and successfully registered the trial with the Clinical Trials Registry-India (CTRI/2024/04/065931), ensuring compliance with regulatory guidelines. Following this, patients were enrolled into the study after undertaking written informed consent, confirming their voluntary participation and understanding of the study's objectives, procedures, and potential risks.

### Source of data:

In-vitro study: Regenerative laboratory Dr. D. Y. Patil Dental college, Pimpri, Pune-18

Clinical study: Eligible participants, as per the inclusion criteria, were enrolled from the Outpatient and Inpatient Departments of Dr. D. Y. Patil College of Ayurved Hospital and Research Centre, Pimpri, Pune-18.

### For Clinical Enrolment:

**Sample size:** Each group included 12 patients excluding dropouts. Following screening, 24 patients who satisfied the inclusion criteria were recruited into the study.

**Sampling technique:** Computerized Randomization

**Drug source:** *Vijaysara vati* and *Vrikshamla vati* were prepared at the FDA-approved Suddhatatva pharmacy of the institute Dr. D. Y. Patil College of Ayurved Hospital and Research Centre, Pimpri, Pune-18.

**Table 1: Drug Review with Mode of action of drugs: (3,4)**

| Aspect                 | <i>Vijayasar</i> ( <i>Pterocarpus marsupium</i> )   | <i>Vrukshamla</i> ( <i>Garcinia indica / cambogia</i> ) |
|------------------------|-----------------------------------------------------|---------------------------------------------------------|
| <i>Rasa</i> (Taste)    | <i>Kashaya, Tikta</i>                               | <i>Amla, Kashaya</i>                                    |
| <i>Guna</i> (Property) | <i>Laghu, Ruksha</i>                                | <i>Laghu, Ruksha</i>                                    |
| <i>Virya</i> (Potency) | <i>Sheeta</i>                                       | <i>Ushna</i>                                            |
| <i>Dosha Action</i>    | <i>Kapha-Pitta Shamana</i>                          | <i>Kapha-Vata Shamana</i>                               |
| <i>Ayurvedic Karma</i> | <i>Lekhana, Medoghna, Agni Deepana</i>              | <i>Lekhana, Agni Deepana, Ama Pachana</i>               |
| Metabolic Effects      | ↑ Insulin sensitivity, ↑ PPAR- $\gamma$ , ↑ GLUT-4  | ↓ ATP-citrate lyase, ↑ Serotonin, ↓ Appetite            |
| Effect on Fat          | ↓ Adipogenesis, ↓ Lipid accumulation                | ↓ Lipogenesis, ↑ Fat oxidation                          |
| Effect on Appetite     | Minimal direct effect                               | Suppresses appetite via serotonin                       |
| Effect on <i>Agni</i>  | Moderate enhancement                                | Strong <i>Deepana</i> (digestive stimulant)             |
| Overall Outcome        | Anti-obesity via glucose regulation & fat reduction | Anti-obesity via appetite suppression & fat inhibition  |

**Figure 1: Showing the ingredients and finished product**

| <i>Vrikshamla</i>                                                                  | <i>Vijayasar</i>                                                                    | <i>Vrukshamla Vati</i>                                                               | <i>Vijayasar Vati</i>                                                                 |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|  |  |  |  |

## Method of preparation

*Vijayasarā churna* and *Vrikshamla churna* are finely sieved and dried separately. Granulation is done to prepare compressible material, thereafter drying is done. Granules are fed into the tablet press machine, where tablets of 250mg are made separately of *Vijaysara* and *Vrikshmala*. Tablets are dried and stored in dry containers.

**Table 2: Analytical report of drugs**

| Sr. no. | Parameters                 | Observations (Vijayasarā vati)                                                                                                 | Observations (Vrikshamla vati)                                                                                              |
|---------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1       | Description                | Colour- Slightly reddish brown<br>Odour - Pleasant<br>Taste- Bitter<br>Shape- Round<br>Thickness- 0.20 cm<br>Diameter- 0.34 cm | Colour- Light brown<br>Odour - Pleasant<br>Taste- Slightly sour<br>Shape- Round<br>Thickness- 0.25 cm<br>Diameter - 0.38 cm |
| 2       | Average weight             | 247mg + 5%                                                                                                                     | 315mg + 5%                                                                                                                  |
| 3       | pH (10% solution)          | 5.58                                                                                                                           | 5.32                                                                                                                        |
| 4       | Hardness test              | 2kg/cm <sup>2</sup>                                                                                                            | 2.62kg/cm <sup>2</sup>                                                                                                      |
| 5       | Disintegration test        | 20:00min                                                                                                                       | 18min:40sec                                                                                                                 |
| 6       | Friability test            | 0.76%                                                                                                                          | 0.15%                                                                                                                       |
| 7       | Loss on drying             | 6.84%                                                                                                                          | 7.84%                                                                                                                       |
| 8       | Total Ash                  | 14.32%                                                                                                                         | 12.32%                                                                                                                      |
| 9       | Acid insoluble Ash         | 5.56%                                                                                                                          | 3.56%                                                                                                                       |
| 10      | Water soluble extractive   | 22.76%                                                                                                                         | 25.84%                                                                                                                      |
| 11      | Alcohol soluble extractive | 10.25%                                                                                                                         | 12.03%                                                                                                                      |

**Table 3: Intervention**

| Drug                               | Dose, Time of intervention | Frequency | Anupan         |
|------------------------------------|----------------------------|-----------|----------------|
| Group A ( <i>Vijayasarā vati</i> ) | 250mg<br>After food        | 2-0-2     | Lukewarm water |
| Group B ( <i>Vrikshamla vati</i> ) | 250mg<br>After food        | 2-0-2     | Lukewarm water |

**Duration of the trial:** 45 days.

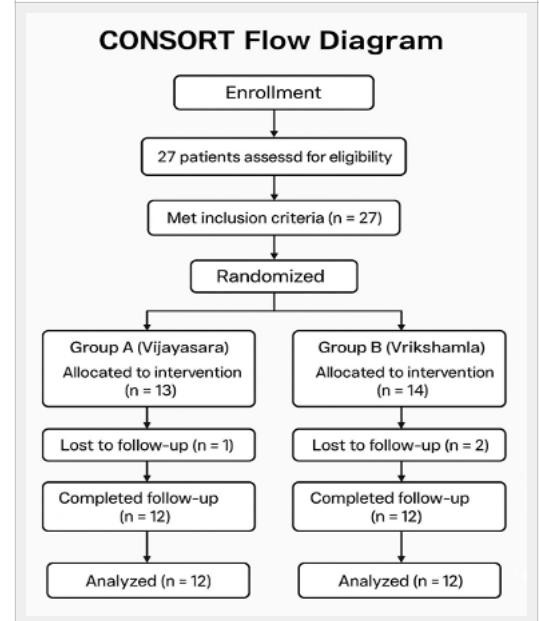
**Criteria for the evaluation and scoring pattern**

### Eligibility Criteria

#### Inclusion Criteria

Adults aged 18 to 60 years, inclusive of both genders. Body Mass Index (BMI) between >24.9 to 32. Presence of Ayurvedic clinical features of *Sthoulya*, including: *Chala Udara* (flabby or excessively mobile abdomen), *Atikshuddha* (increased appetite or frequent hunger), *Chala Stana* (sagging of breast tissue), other signs and symptoms consistent with classical Ayurvedic descriptions. Willingness to receive Ayurvedic treatment only for the duration of the study. Voluntary participation with written informed consent.

#### Exclusion Criteria


Individuals undergoing any other weight loss therapies, including modern medicine, surgery, or other traditional systems. Patients with severe systemic illnesses, such as: Heart diseases (e.g., coronary artery disease), Renal disorders (e.g., chronic kidney disease), Malignancies or any diagnosed cancer. Pregnant or

lactating women and individuals unable or unwilling to comply with study requirements.

**Table 4: Subjective parameters**

| Symptoms      | Gradation                      |                                                |                                                               |                                             |                                                     |
|---------------|--------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|
|               | 0                              | 1                                              | 2                                                             | 3                                           | 4                                                   |
| Daurgandhya   | Absence of foul smell          | Foul smell present from 1-2 feet's             | Foul smell present from 2-4 feet's                            | Foul smell present from 4 feet's            | -                                                   |
| Kshudra shwas | Dysnea After heavy workout     | Dysnea after moderate workout                  | Dysnea after little work doesn't relieve                      | Dysnea after little work relieves soon      | Dysnea on resting condition                         |
| Angagaurva    | No heaviness                   | Heaviness felt, doesn't hamper work            | Heaviness felt, hampers work                                  | Heaviness With flabbiness all over the body | -                                                   |
| Atikshudha    | Becomes hungry after 6hrs      | Becomes hungry About 4-5hrs                    | Become hungry about 3hrs                                      | Become hungry about 2hrs                    | -                                                   |
| Atipipasa     | Normal thirst (2-3 litres/day) | Intake of more than 4-5 litres                 | Intake more than 5-6 litres                                   | Intake of more than 6-7 litres              | Intake of more than 7-8 or more                     |
| Chala udar    | Absence of                     | Presence of                                    | -                                                             | -                                           | -                                                   |
| Chala Stana   | Absence of                     | Presence of                                    | -                                                             | -                                           | -                                                   |
| Daurbalya     | Feeling of well being          | Tired After doing strengthen physical activity | Tired after doing moderate exercise but can do daily activity | Performs daily activity with difficulty     | Extremely tired to carry out daily routine activity |

**Figure 5: CONSORT chart**



**Objective parameters**

- Body weight
- Body mass index
- Girth measurements of following areas
  - 1. Chest 2. Abdomen 3. Hip 4. Mid-arm 5. Waist
- Lipid Profile

**Observations**

Most participants in the study were aged 31–40 years (29.17%), followed by 21–30 years (25.00%) and 41–50 years (20.83%), indicating a higher prevalence of obesity in early to mid-adulthood. Students comprised the largest occupational group (45.83%), likely due to sedentary routines, irregular schedules, and unhealthy dietary habits. Homemakers (12.50%) and service workers also showed notable representation. A majority of participants (83.33%) followed a mixed diet, suggesting that consumption of animal products and processed foods may contribute to obesity. Females (54.17%) slightly outnumbered males (45.83%), and marital status was evenly distributed. All individuals belonged to the medium-income group, indicating that lifestyle-related risk factors were prevalent across this socioeconomic category.

**Statistical methods**

SPSS software version 21 was utilised for all statistical data analyses conducted in the study. Ordinal variables (subjective parameters) were assessed using the Friedman test, while binary

variables were analysed using Cochran's Q test for within-group comparisons over time. Fisher's exact test was employed to evaluate between-group differences at follow-up intervals. Changes in weight, BMI, lipid profile within each group were analysed using the paired t-test, whereas unpaired t-tests were used to compare weight changes between different groups.

**Results****In-vitro study Analysis**

In vitro study assessed and compared the anti-adipogenic efficacy of *Garcinia indica* (*Vrukshamla*) (5) and *Pterocarpus marsupium* (*Vijayasar*) (4) in 3T3-L1 preadipocyte cells. Both extracts demonstrated excellent cytocompatibility, with MTT assay confirming no cytotoxicity up to 10 µg/mL. Adipogenic inhibition was evaluated through Oil Red O staining, which showed a marked reduction in lipid accumulation in both treatment groups, with *Garcinia indica* exerting a more pronounced effect. Importantly, gene expression analysis revealed significant downregulation of key adipogenic markers—PPAR-γ and GLUT-4—in both groups, indicating suppressed adipocyte differentiation at the molecular level. These results confirm that both plant extracts inhibit adipogenesis via transcriptional regulation of adipogenicity genes, with *Garcinia indica* demonstrating superior potency. This study provides mechanistic support for the traditional Ayurvedic use of these botanicals in the management of *Sthoulya* (obesity) and highlights as natural modulators for adipocyte inhibition.

**Pilot clinical analysis statistical outcome**

**Table 5: comparison of effect of intervention within groups before treatment (BT) and after treatment (AT). Expressed in mean and standard deviation**

| Parameter           | Group   | Mean ± Standard deviation |                     | P value |
|---------------------|---------|---------------------------|---------------------|---------|
|                     |         | BT                        | AT                  |         |
| Daurgandhya         | Group A | 2.7500 ± 1.0559           | 1.0000 ± 0.60302    | < 0.05  |
|                     | Group B | 2.8333p ± 0.71774         | 0.9167 ± 0.66856    | < 0.05  |
| Kshudra shwas       | Group A | 0.5833 ± 0.99620          | 0.0833 ± 0.28868    | < 0.05  |
|                     | Group B | 0.4167 ± 0.66856          | 0.1667 ± 0.38925    | < 0.05  |
| Anga Gaurav         | Group A | 2.5000 ± 0.52223          | 0.3333 ± 0.49237    | < 0.05  |
|                     | Group B | 2.6667 ± 0.49237          | 0.5833 ± 0.66856    | < 0.05  |
| Atikshudha          | Group A | 2.5833 ± 0.79296          | 0.8333 ± 0.71774    | < 0.05  |
|                     | Group B | 2.4167 ± 0.51493          | 0.8333 ± 0.93744    | < 0.05  |
| Atipipasa           | Group A | 0.4167 ± 0.79296          | 0.0833 ± 0.28868    | > 0.05  |
|                     | Group B | 0.3333 ± 0.49237          | 0.0833 ± 0.28868    | > 0.05  |
| Chala udara         | Group A | 0.9167 ± 0.28868          | 0.3333 ± 0.49237    | < 0.05  |
|                     | Group B | 1.0000 ± 0.00000          | 0.6667 ± 0.49237    | < 0.05  |
| Chala sthana        | Group A | 0.5833 ± 0.51493          | 0.2500 ± 0.45227    | < 0.05  |
|                     | Group B | 0.6667 ± 0.49237          | 0.3333 ± 0.49237    | < 0.05  |
| Daurbalya           | Group A | 2.0000 ± 1.12815          | .2500 ± .45227      | < 0.05  |
|                     | Group B | 0.3333 ± 0.49237          | 0.0833 ± 0.28868    | > 0.05  |
| Serum cholesterol   | Group A | 167.4167 ± 48.63493       | 152.0833 ± 30.91766 | > 0.05  |
|                     | Group B | 187.8333 ± 56.60683       | 161.4000 ± 35.01989 | < 0.05  |
| Serum triglycerides | Group A | 121.5667 ± 35.51746       | 116.7250 ± 31.43533 | > 0.05  |
|                     | Group B | 147.5000 ± 35.51746       | 127.4167 ± 31.43533 | < 0.05  |
| Serum HDL           | Group A | 42.3083 ± 9.85139         | 42.5000 ± 10.42288  | > 0.05  |
|                     | Group B | 44.9500 ± 9.85139         | 40.9417 ± 10.42288  | < 0.05  |
| Serum LDL           | Group A | 101.2083 ± 47.96795       | 93.7417 ± 35.72935  | > 0.05  |
|                     | Group B | 112.3417 ± 50.94254       | 107.1667 ± 35.82988 | > 0.05  |

**Table 6: Comparison between groups from day 0 to day 45. Expressed in mean rank and percentage effect**

| Parameter     | Group   | Mean rank | Percentage effect (%) | P value |
|---------------|---------|-----------|-----------------------|---------|
| Daurgandhyā   | Group A | 12.00     | 8.33%                 | < 0.05  |
|               | Group B | 13.00     | 7.69%                 | < 0.05  |
| Kshudra shwas | Group A | 10.46     | 39.21%                | < 0.05  |
|               | Group B | 14.56     | 28.15%                | < 0.05  |
| Anga Gaurav   | Group A | 12.96     | 7.10%                 | < 0.05  |
|               | Group B | 12.04     | 7.65%                 | < 0.05  |
| Atikshudha    | Group A | 13.50     | 14.81%                | < 0.05  |
|               | Group B | 11.50     | 17.39%                | < 0.05  |
| Atipipasa     | Group A | 12.25     | 4.08%                 | > 0.05  |
|               | Group B | 12.75     | 3.92%                 | > 0.05  |
| Daurbalya     | Group A | 11.63     | 17.19%                | < 0.05  |
|               | Group B | 13.63     | 14.69%                | > 0.05  |

**Table 7a and 7 b: comparison effect of drug on weight and BMI (between groups)****Table 7a: Weight**

|         | N  | Mean   | Std. Deviation | Std. Mean | t      | df | p-value |
|---------|----|--------|----------------|-----------|--------|----|---------|
| Group A | 12 | 1.7000 | 0.55922        | 0.16143   |        |    |         |
| Group B | 12 | 1.8333 | 0.57735        | 0.16667   | -0.575 | 22 | 0.571   |

**Table 7b: BMI**

|         | N  | Mean   | Std. Deviation | Std. Error Mean | t      | df | p-value |
|---------|----|--------|----------------|-----------------|--------|----|---------|
| Group A | 12 | 0.6083 | 0.21933        | 0.06332         |        |    |         |
| Group B | 12 | 0.6333 | 0.23868        | 0.06890         | -0.267 | 22 | 0.792   |

### Pilot Clinical study analysis

Both Group A and Group B showed statistically significant improvement ( $p < 0.05$ ) in all clinical symptoms assessed, including *Daurbalya*, *Kshudra shwas*, *Anga gaurav*, *Atiksudha*, *Chala udara*, and *Chala sthana*. This suggests that both interventions were effective in reducing symptom severity from baseline (BT) to after treatment (AT).

A statistically significant reduction in total serum cholesterol was observed in Group B ( $p < 0.05$ ), while the change in Group A was not significant ( $p > 0.05$ ). The reduction in serum triglycerides in Group A was not statistically significant ( $p > 0.05$ ). HDL cholesterol showed a significant decrease in Group B ( $p < 0.05$ ), whereas Group A exhibited a non-significant change ( $p > 0.05$ ). Both groups demonstrated reductions in LDL cholesterol, but these were not statistically significant ( $p > 0.05$  for both). Overall Group B showed reduction in lipid profile significantly in comparison with Group A.

A comparative analysis of mean ranks between Group A and Group B across six clinical parameters was conducted. The percentage effect was calculated in both directions to evaluate relative group differences. Statistically significant differences ( $p < 0.05$ ) were observed in *Daurgandhyā*, *Kshudrashwas*, *Anga Gaurav*, and *Atikshudha*. Among these, *Kshudrashwas* exhibited the highest percentage difference (39.21% from Group A to Group B), suggesting a markedly greater improvement or symptom difference between the groups. *Atikshudha* also showed a moderate effect size (14.81%). Parameters like *Atipipasa* and *Daurbalya* showed percentage differences but were not statistically significant ( $p > 0.05$ ), indicating these variations may be due to chance rather than a consistent effect.

The comparison between Group A and Group B showed no statistically significant difference in the reduction of weight ( $p =$

0.571) or BMI ( $p = 0.792$ ). Both groups had similar mean reductions in weight (1.70 vs. 1.83 kg) and BMI (0.61 vs. 0.63 kg/m<sup>2</sup>). The p-values indicate that the observed differences are likely due to chance. Thus, both drugs had comparable effects on weight and BMI.

### Discussion

In the present study, the efficacy of two classical Ayurvedic herbs—*Vrikshamla* (*Garcinia indica*) and *Vijayasarā* (*Pterocarpus marsupium*)—was evaluated for their anti-obesity potential using both traditional Ayurvedic understanding and In-vitro frameworks.

*Sthoulya* is primarily a disorder of *Medo Dhatu* (adipose tissue), characterized by an imbalance in Kapha dosha, leading to excessive accumulation of *medo dhatu*, decreased digestive fire (*Agni*), and sluggish metabolism (*Mandagni*) or excessive metabolism leading to over eating (*Atyaagni*). *Vrikshamla* is described in classical texts as having *Amla Rasa* (sour taste), *Laghu* (light) and *Ruksha* (dry) qualities, which help pacify Kapha and stimulate *Agni*, thereby catalyzes in the breakdown of accumulated Medas. On the other hand, *Vijayasarā* holds *Tikta* (bitter) and *Kashaya* (astringent) tastes, which are known to reduce *Kapha* and *Medo Dhatu*, promoting *Lekhana* (scrapping action), thus supporting weight reduction and improving metabolic efficiency.

In-vitro study reveals, *Vrikshamla* is rich in Hydroxycitric acid (HCA), a compound that inhibits ATP-citrate lyase, a key enzyme involved in lipogenesis. This biochemical action results in decreased conversion of carbohydrates into fat, reduced appetite, and improved lipid metabolism. On the other hand, *Vijayasarā* contains bioactive flavonoids and phenolic compounds that enhance insulin sensitivity, regulate blood glucose levels, and modulate lipid profiles. Moreover, both herbs exhibit antioxidant and anti-inflammatory properties, which help mitigate obesity-

induced oxidative stress and low-grade chronic inflammation, factors strongly associated with metabolic syndrome.

Study findings, supported by RT-PCR analysis, revealed upregulation of PPAR- $\gamma$  and GLUT-4 gene expression, indicating improved adipocyte function and glucose utilization in treated groups. This molecular evidence authenticates the traditional claims of *Lekhana* and *Medoghna* effects of *Pterocarpus marsupium* and *Garcinia indica* mentioned in Ayurvedic texts, thus bringing validation of both biochemical and traditional approach.

## Conclusion

*Garcinia Indica* exhibited superior efficacy compared to *Pterocarpus marsupium*, both in in vitro studies on the 3T3-L1 adipocyte cell line and in clinical evaluations on obese patients. This superiority was evident in objective parameters, strategic anthropometric indices, and lipid profile improvements, highlighting *Garcinia Indica* more pronounced role in reducing adipogenesis and enhancing metabolic balance with dietary and healthy living practices.

## Future Scope for studies

This study highlights the importance of in vitro experimentation as a foundational step before progressing to clinical evaluation. Using models like the 3T3-L1 adipocyte cell line enables a better understanding of cellular responses, mechanisms of action, and gene-level interactions in a controlled environment. These early findings help guide safe and effective dose selection for human studies.

Moving forward, further research can focus on:

Investigating precise cellular mechanisms and molecular pathways.

Developing polyherbal formulations or combinations with dietary or lifestyle interventions.

And exploring their role in managing metabolic disorders such as dyslipidaemia, fatty liver, insulin resistance.

## Study limitations:

The limited duration of study and pilot sample size were designed were constraints in study.

## References

1. International Institute for Population Sciences (IIPS) and ICF. National Family Health Survey (NFHS-5), India, 2019–21: Key Indicators. Mumbai: IIPS; 2021.
2. Deepa M, Anjana RM, Manjula D, Narayan KMV, Mohan V. Prevalence of overweight and obesity among urban adults in India: Results from the ICMR–INDIAB study. Indian J Med Res. 2021;153(5):745–755.
3. Kaideva. Kaideva Nighantu (Pathyapathya Vibodhaka). Edited by Pandit Lakshmi pati Shastri. Varanasi: Chaukhamba Orientalia; 2000. p. 138.
4. Kaideva. Kaideva Nighantu (Pathyapathya Vibodhaka). Edited by Pandit Lakshmi pati Shastri. Varanasi: Chaukhamba Orientalia; 2000. p. 309.
5. Jain A, Soni M, Deb L. *Pterocarpus marsupium Roxb*: A potent drug for treatment of diabetes and obesity. Int J Ayurved Med. 2020;11(1):120–126.
6. Patel K, Gadewar M, Tripathi R, Prasad SK, Patel DK. *Garcinia indica*: A potential source for anti-obesity management – A review. Int J Ayurved Med. 2019;10(4):215–220.
7. Gupta S, Rani S, Mishra R. In-vitro evaluation of anti-obesity potential of herbal extracts using 3T3-L1 adipocyte model. Int J Ayurved Med. 2021;12(3):200–206.
8. Dwivedi LN. Management of obesity through Ayurveda: A review. AYU. 2011;32(4):482–486.
9. Patil S, et al. Ayurvedic management of Sthoulya (obesity): A clinical study. J Ayurveda Integr Med. 2013;4(1):33–37.
10. Mathapati IS, et al. Therapeutic evaluation of Vrikshamla (*Garcinia cambogia*) in the management of Sthoulya (obesity) w.s.r. dyslipidemia – A case report. Ayushdhara. 2022;9(2):50–57.
11. Raja R, Mishra SC, Sharma SD, Sharma A. Observational study on impact of Pathyapathya in prevention of Sthoulya (obesity). Ayushdhara. 2023;10(Suppl 1):19–26.
12. Sharma R, Adiga M. A review on Sthoulya with special reference to obesity. Int J Ayurved Med Sci. 2021;2(4):195–201.
13. Rioux J, Howerter A. Whole-systems Ayurvedic medicine and yoga therapy for obesity: outcomes from a pilot study. Int J Ayurved Med. 2019;14(Suppl 1):50–58.
14. Banjare J, et al. Triphala regulates adipogenesis by modulating adipogenic gene expression in 3T3-L1 cells. Int J Ayurved Med. 2018;9(4):200–204.
15. Sharma PV. Charaka Samhita. Vol. 1. Varanasi: Chaukhamba Orientalia; 2014.
16. Shastri K. Bhavaprakasha Nighantu. Varanasi: Chaukhamba Bharati Academy; 2010.
17. Tripathi B. Ashtanga Hridaya. Varanasi: Chaukhamba Sanskrit Pratishthan; 2012.

\*\*\*\*\*